
Accelerating weather 
models with PGI compilers 

The Portland Group 
www.pgroup.com 

 

dave.norton@pgroup.com 

http://www.pgroup.com/


CUDA Fortran in 3 slides 



CUDA Fortran VADD Host Code 

subroutine vadd( A, B, C ) 

  use cudafor 

  use kmod 

  real, dimension(:) :: A, B 

  real, pinned, dimension(:) :: C 

  real, device, allocatable:: Ad(:), Bd(:), Cd(:) 

  integer :: N 

  N = size( A, 1 ) 

  allocate( Ad(N), Bd(N), Cd(N) ) 

  Ad = A(1:N) 

  Bd = B(1:N) 

  call vaddkernel<<<(N+31)/32,32>>>( Ad, Bd, Cd, N ) 

  C = Cd 

  deallocate( Ad, Bd, Cd ) 

 end subroutine 
3 



CUDA Fortran VADD Device Code 

module kmod 

 use cudafor 

contains 

 attributes(global) subroutine vaddkernel(A,B,C,N) 

  real, device :: A(N), B(N), C(N) 

  integer, value :: N 

  integer :: i 

  i = (blockidx%x-1)*32 + threadidx%x 

  if( i <= N ) C(i) = A(i) + B(I) 

 end subroutine 

end module 
 

4 



Building a CUDA Fortran Program 

 CUDA Fortran is supported by the PGI Fortran compilers when the filename 
uses a CUDA Fortran extension.  The .cuf extension specifies that the file is a 
free-format CUDA Fortran program;  

 The .CUF extension may also be used, in which case the program is 
processed by the preprocessor before being compiled.  

 To compile a fixed-format program, add the command line option –Mfixed.  

 CUDA Fortran extensions can be enabled in any Fortran source file by 
adding the –Mcuda command line option. 

 

 

 Most F2003 features should work in CUDA Fortran. 

 

 There is a (CUDA-like) API to access features 
 Streams supported through API rather then language 



Accelerator Directives for flat 
performance profile codes 

in 6 slides 



Accelerator VADD Device Code 

(two dimensional array example) 

module kmod 

 contains 

 subroutine vaddkernel(A,B,C) 

  real :: A(:,:), B(:,:), C(:,:) 

!$acc region 

  C(:,:) = A(:,:) + B (:,:) 

 <lots of other code to do neat stuff> 

 <special code to do even neater stuff> 

!$acc end region 

 end subroutine 

end module 

 

 
 

7 

!$acc region clauses can surround many individual 
loops and compute kernels.  There is no implicit 
GPU/CPU data movement within a region 



Compiling the subroutine: 

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.F90 
 
vaddkernel: 
      5, Generating copyout(c(1:z_b_14,1:z_b_17)) 
         Generating copyin(a(1:z_b_14,1:z_b_17)) 
         Generating copyin(b(1:z_b_14,1:z_b_17)) 
         Generating compute capability 1.0 binary 
         Generating compute capability 1.3 binary 
         Generating compute capability 2.0 binary 
      6, Loop is parallelizable 
         Accelerator kernel generated 
          6, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 
             !$acc do parallel, vector(16) ! blockidx%y threadidx%y 
             CC 1.0 : 7 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy 
             CC 1.3 : 8 registers; 64 shared, 8 constant, 0 local memory bytes; 100% occupancy 
             CC 2.0 : 15 registers; 8 shared, 72 constant, 0 local memory bytes; 100% occupancy 



Tuning the compute kernel 

Accelerator VADD Device Code 

module kmod 

 contains 

 subroutine vaddkernel(A,B,C)   ! We know array size 

  real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96) 

  integer :: i,j 

!$acc region 

!$acc do parallel 

  do j = 1,size(A,1) 

!$acc do vector(96) 

    do i = 1,size(A,2) 

      C(j,i) = A(j,i) + B (j,i) 

    enddo 

  enddo 

!$acc end region 

 end subroutine 

end module 
 

9 



Keeping the data on the GPU 

Accelerator VADD Device Code 

module kmod 

 contains 

 subroutine vaddkernel(A,B,C)    

  real :: A(:,:), B(:,:), C(:,:) 

!$acc reflected (A,B,C) 

!$acc region 

   C(:,:) = A(:,:) + B (:,:) 

!$acc end region 

 end subroutine 

end module 
 

10 

The !$reflected clause must be visible to the 
caller so it knows to pass pointers to arrays on 
the GPU rather then copyin actual array data. 



Compiling the subroutine: 

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.F90 
vaddkernel: 
      5, Generating reflected(c(:,:)) 
         Generating reflected(b(:,:)) 
         Generating reflected(a(:,:)) 
      6, Generating compute capability 1.0 binary 
         Generating compute capability 1.3 binary 
         Generating compute capability 2.0 binary 
      7, Loop is parallelizable 
         Accelerator kernel generated 
          7, !$acc do parallel, vector(16) ! blockidx%x threadidx%x 
             !$acc do parallel, vector(16) ! blockidx%y threadidx%y 
             CC 1.0 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 66% occupancy 
             CC 1.3 : 11 registers; 80 shared, 8 constant, 0 local memory bytes; 100% occupancy 
             CC 2.0 : 17 registers; 8 shared, 88 constant, 0 local memory bytes; 100% occupancy 



Allocating/Deallocating GPU Arrays 

Accelerator VADD Device Code 

subroutine vadd(M,N,C) 

  use kmod ! Visibility of !$acc reflected 

  real, dimension(:,:) :: A, B, C 

  integer :: N 

!$acc mirror(A,B)  !device resident clause in 1.3 

  allocate(A(M,N),B(M,N)) 

! C has been mirrored and allocated previously 

  A = 1.0 

  B = 2.0 

!$acc update device(A,B,C) 

  call vaddkernel (A,B,C) 

  call kernel2 (A,B,C) 

  call kernel3 (A,B,C) 

  call kernel4 (A,B,C) 

!$acc update host(C) 

  deallocate( A, B) 

 end subroutine 
 

12 



Using GPU device-resident data  
across subroutines 

subroutine timestep(Input,Result,M,N) 

   use kmod ! Make reflected var’s visible 

   real, dimension(M,N) :: Input,Result 

!$acc reflected (Input,Result) 

   integer :: M,N 

   real, allocatable :: B,C,D 

   dimension(:,:) :: B,C,D 

!$acc mirror(B,C,D) 

   allocate(B(M,N),C(M,N),D(M,N)) 

   B = 2.0 

!$acc update device(Input,B) 

   call vaddkernel (Input,B,C) 

   ... 

   call kernel2 (C,D) 

   ... 

   call kernel3 (D,Result) 

!$acc update host(Result) 

   deallocate(B,C,D) 

end subroutine 

module kmod 

Contains 

! 

   subroutine vaddkernel(A,B,C)    

   real :: A(:,:),B(:,:),C(:,:) 

!$acc reflected (A,B,C) 

!$acc region 

      C(:,:) = A(:,:) + B (:,:) 

!$acc end region 

   end subroutine 

! 

   subroutine kernel2(C,D) 

   real :: C(:,:),D(:,:) 

!$acc reflected (C,D) 

!$acc region 

      < compute-intensive loops > 

!$acc end region 

   end subroutine 

   ... 

end module 

 

CPU Code GPU Code 





 

% pgfortran -help -ta 

-ta=nvidia:{analysis|nofma|[no]flushz|keepbin|keepptx|keepgpu|maxregcount:<n>| 

            c10|cc11|cc12|cc13|cc20|fastmath|mul24|time|cuda2.3|cuda3.0| 

            cuda3.1|cuda3.2|cuda4.0|[no]wait}|host 

                   Choose target accelerator 

   nvidia          Select NVIDIA accelerator target 

   analysis        Analysis only, no code generation 

   nofma           Don't generate fused mul-add instructions 

   [no]flushz      Enable flush-to-zero mode on the GPU 

   keepbin         Keep kernel .bin files 

   keepptx         Keep kernel .ptx files 

   keepgpu         Keep kernel source files 

   maxregcount:<n> Set maximum number of registers to use on the GPU 

   cc10            Compile for compute capability 1.0 

   ... 

   cc20            Compile for compute capability 2.0 

   fastmath        Use fast math library 

   mul24           Use 24-bit multiplication for subscripting 

   time            Collect simple timing information 

   cuda2.3         Use CUDA 2.3 Toolkit compatibility 

   ... 

   cuda4.0         Use CUDA 4.0 Toolkit compatibility 

   [no]wait        Wait for each kernel to finish; overrides nowait clause 

   host            Compile for the host, i.e. no accelerator target 



Compute region directive clauses for tuning 
data allocation and movement 

Clause Meaning 

if (condition) Execute on GPU conditionally 

copy (list) Copy in and out of GPU memory 

copyin (list) Only copy in to GPU memory 

copyout (list) Only copy out of GPU memory 

local (list) Allocate locally on GPU 

deviceptr (list) C pointers in list are device pointers 

update device (list) Update device copies of the arrays 

update host (list) Update host copies of the arrays 



Loop directive clauses for tuning 
GPU kernel schedules 

Clause Meaning 

parallel [(width)] Parallelize the loop across the multi-

processors 

vector [(width)] SIMD vectorize the loop within a multi-

processor 

seq [(width)] Execute the loop sequentially on each 

thread processor 

independent Iterations of this loop are data independent 

of each other 

unroll (factor) Unroll the loop factor times 

cache (list) Try to place these variables in shared 

memory 

private (list) Allocate a copy of each variable in list for 

each loop iteration 



Timing / Profiling 

 How long does my program take to run? 

  time ./myprogram 

 How long do my kernels take to run? 

pgfortran –ta=nvidia,time 

 Environment variables: 
 export ACC_NOTIFY=1 

 export  NVDEBUG=1 

 # cuda profiler settings 

 #export CUDA_PROFILE=1 

 #export CUDA_PROFILE_CONFIG=cudaprof.cfg 

 #export CUDA_PROFILE_CSV=1 

 #export CUDA_PROFILE_LOG=cudaprof.log 

 



Compiler-to-Programmer Feedback 
Incremental porting/tuning for GPUs 

HPC 

Code 
PGI  
Compiler 

x64 

CCFF 

Trace PGPROF 

HPC 

User 

Acc 

+ 

Directives, Options, RESTRUCTURING 

Restructuring for 

Accelerators will  

be More Difficult 

than vectorization 

Performance 

HPC 

User 



Obstacles to GPU code generation 

 Loop nests to be offloaded to the GPU must be rectangular 

 At least some of the loops to be offloaded must be fully data parallel with 
no synchronization or dependences across iterations 

 Computed array indices should be avoided 

 All function calls must be inlined within loops to be offloaded  

 In Fortran, the pointer attribute is not supported;  pointer arrays may be 
specified, but pointer association is not preserved in GPU device memory 

 In C 

 Loops that operate on structs can be offloaded, but those that operate on nested 
structs cannot 

 Pointers used to access arrays in loops to be offloaded must be declared with C99 
restrict (or compiled w/-Msafeptr, but it is file scope) 

 Pointer arithmetic is not allowed within loops to be offloaded 

 

 



Evolution of the Directives 

 Published Version 1.0 of the PGI Accelerator 
Directives  

 Intent of publication was to start discussion on 
standardization process 

 Implemented v1.o 

 Standardization process started through 
OMP 

 Published Version 1.3 of the PGI Accelerator 
Directives 

 Currently implementing v1.3 



 C99, C++, F2003 Compilers 

 Optimizing 

 Vectorizing 

 Parallelizing 

 Graphical parallel tools 

 PGDBG® debugger 

 PGPROF® profiler 

 AMD, Intel, NVIDIA, ST 

 64-bit / 32-bit 

 PGI Unified Binary™ 

 Linux, MacOS, Windows 

 Visual Studio integration 

 GPGPU Features 

 CUDA Fortran 

 PGI Accelerator™ 

 CUDA-x86 
www.pgroup.com 



Reference Materials 

 PGI Accelerator programming model 

 http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf 
 

 CUDA Fortran 

 http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf 
 

 CUDA-x86 

 http://www.pgroup.com/resources/cuda-x86.htm  
 

 Understanding the CUDA Threading Model 

 http://www.pgroup.com/lit/articles/insider/v2n1a5.htm 


